You are currently browsing the tag archive for the ‘futurist’ tag.

The human brain and the internet share a key feature in their layout; a web-like structure of individual nodes acting in unison to transmit information between physical locations. In brains we have neurons, comprised in turn of myelinated axons and dendrites. The internet is comprised of similar entities, with connections such as fibre optics and ethernet cabling acting as the mode of transport for information. Computers and routers act as gateways (boosting/re-routing) and originators of such information.

How can we describe the physical structure and complexity of these two networks? Does this offer any insight into their similarities and differences? What is the plausibility of a conscious Internet? These are the questions I would like to explore in this article.

At a very basic level, both networks are organic in nature (surprisingly, in the case of the Internet); that is, they are not the product of an ubiquitous ‘designer’ and are given the freedom to evolve as their environment sees fit. The Internet is given permission to grow without a directed plan. New nodes and capacity added haphazardly. The naturally evolved topology of the Internet is one that is distributed; the destruction of nodes has little effect on the overall operational effectiveness of the network. Each node has multiple connections, resulting in an intrinsic redundancy where traffic is automatically re-routed to the target destination via alternate paths.

We can observe a similar behaviour in the human brain. Neurological plasticity serves a function akin to the distributed nature of the Internet. Following injury to regions of the brain, adjacent areas can compensate for lost abilities by restructuring neuronal patterns. For example, injuries to the frontal cortex motor area can be minimised with adjacent regions ‘re-learning’ otherwise mundane tasks that have since been lost as a result of the injury. While such recoveries are entirely possibly with extensive rehabilitation, two key factors determine the likelihood and efficiency of the operation; the intensity of the injury (percentage of brain tissue destroyed, location of injury) and leading from this, the chronological length of recovery. These factors introduce the first discrepancy between these two networks.

Unlike the brain, the Internet is resilient to attacks on its infrastructure. Local downtime is a minor inconvenience as traffic moves around such bottlenecks by taking the next fastest path available. Destruction of multiple nodes has little effect on the overall web of information. Users may loose access to or experience slowness in certain areas, but compared to the remainder of possible locations (not to mention redundancies in content – simply obtain the information elsewhere) such lapses are just momentary inconveniences. But are we suffering from a lack of perspective when considering the similarities of the brain and the virtual world? Perhaps the problem is one related to a sense of scale. The destruction of nodes (computers) could instead be interpreted in the brain as the removal of individual neurons. If one takes this proposition then the differences begin to loose their lucidity.

An irrefutable difference, however, arises when one considers both the complexity and the purpose of the two networks. The brain contains some 100 billion neurons, whilst the Internet comprises a measly 1 billion users by comparison (with users roughly equating the number of nodes, or access terminals that are physically connected to the Internet). Brains are the direct product of evolution, created specifically to keep the organism alive in an unwelcoming and hostile living environment. The Internet, on the other hand, is designed to accommodate a never-ending torrent of expanding human knowledge.  Thus the dichotomy in purpose between these two networks is quite distinguished, with the brain focusing on reactionary and automated responses to stimuli while the Internet aims to store information and process requests for its extraction to the end user.

Again we can take a step back and consider the similarities of these two networks. Looking at topology, it is apparent that the distributed nature of the Internet is similar to the structure and redundancy of the human brain. In addition, the Internet is described as a ‘scale-free’ or power-law network, indicating that a small percentage of highly connected nodes accounts for a very large percentage of the overall traffic flow. In effect, a targeted attack on these nodes would be successful in totally destroying the network. The brain, by comparison, appears to be organised into distinct and compartmentalised regions. Target just a few or even one of these collections of cells and the whole network collapses.

It would be interesting to empirically investigate the hypothesis that the brain is also a scale-free network that is graphically represented via a power law. Targetting the thalamus for destruction, (which is a central hub through which sensory information is redirected) might have the same devastating effect on the brain as destroying the ICANN headquarters in the USA (responsible for domain name assignment).

As aforementioned, the purposes of these two networks are different, yet share the common bond of processing and transferring information. At such a superficial level we see that the brain and the Internet are merely storage and retrieval devices, upon which the user (or directed thought process) are sent on a journey through a virtual world towards their intended target (notwithstanding the inevitable sidetracks along the way!). Delving deeper, the differences in purpose act as a deterrent when one considers the plausibility of consciousness and self-awareness.

Which brings us to the cusp of the article. Could the Internet, given sufficient complexity, become a conscious entity in the same vein as the human brain? Almost immediately the hypothesis is dashed due to its rebellion against common sense. Surely it is impossible to propose that a communications network based upon binary machines and internet protocols could ever achieve a higher plane of existence. But the answer might not be as clear cut as one would like to believe. controversially, both networks could be controlled by indeterminate processes. The brain, at its very essence, is governed by quantum unpredictability. Likewise, activity on the Internet is directed by self-aware, indeterminate beings (which in turn, are the result of quantum processes). At what point does the flow of information over a sufficiently complex network result in an emergent complexity mots notably characterised by a self-aware intelligence? Just as neurons react to the incoming electrical pulses of information, so too do the computers of the internet pass along packets of data. Binary code is equated with action potentials; either information is transmitted or not.

Perhaps the most likely (and worrying) outcome in a futurist world would be the integration of an artificial self-aware intelligence with the Internet. Think Skynet from the Terminator franchise. In all possibility such an agent would have the tools at its disposal to highjack the Internet’s comprising nodes and reprogram them in such a fashion as to facilitate the growth of an even greater intelligence. The analogy here is if the linking of human minds were possible, the resulting intelligence would be great indeed – imagine a distributed network of humanity, each individual brain linked to thousands of others in a grand web of shared knowledge and experience.

Fortunately such a doomsday outlook is most likely constrained within the realms of science fiction. Reality tends to have a reassuring banality about it that prevents the products of human creativity from becoming something more solid and tangible. Whatever the case may be in regards to the future of artificial intelligence, the Internet will continue to grow in complexity and penetration. As end user technology improves, we take a continual step closer towards an emergent virtual consciousness, whether it be composed of ‘uploaded’ human minds or something more artificial in nature. Let’s just hope that a superior intelligence can find a use for humanity in such a future society.

A recurring theme and technological prediction of futurists is one in which human intelligence supersedes that of the previous generation through artificial enhancement. This is a popular topic on the Positive Futurist website maintained by Dick Pelletier, and one which provides food for thought. Mr Pelletier outlines a near future (2030s) where a combination of nanotechnology and insight into the inner workings of the human brain facilitate an exponential growth of intelligence. While the accuracy of such a prediction is open to debate (specifically the technological possibilities of successful development within the given timeframe), if such a rosy future did come to fruition what would be the consequences on society? Specifically, would an increase of average intelligence necessarily result in an overall improvement to quality of life? If so, which areas would be mostly affected (eg morality, socio-economic status)? These are the questions I would like to explore in this article.

The main argument provided by futurists is that technological advances relating to nano-scale devices will soon be realised and implemented throughout society. By utilising these tiny automatons to the largest extent possible, it is thought that both disease and aging could be eradicated by the middle of this century. This is due to the utility of nanobots, specifically their ability to carry out pre-programmed tasks in a collective and automated fashion without any conscious awareness on behalf of the host. In essence, nano devices could act as a controllable extension of the human body, giving health professionals the power to monitor and treat throughout the organisms lifespan. But the controllers of these instruments need to know what to target and how to best direct their actions; a point of possible sabotage to the futurists’ plan. In all likelihood, however, such problems will only prove to serve as temporary hindrances and should be overcome through extensive testing and development phases.

Assuming that a) such technology is possible and b) it can be controlled to produce the desired results, the future looks bright for humanity. By further extending nanotechnology with cutting edge neurological insight, it is feasible that intelligence can be artificially increased. The possibility of artificial intelligence and the development of an interface with the human mind almost ensures a future filled with rapid growth. To this end, an event aptly named the ‘technological singularity’ has been proposed, which outlines the extension of human ability through aritificial means. The singularity allows for innovation to exceed the rate of development; in short, humankind could advance (technologically) faster than the rate of input. While the plausibility of such an event is open to debate, it does sound feasible that artificial intelligence could assist us to develop new and exciting breakthroughs in science. If conscious, self-directed intelligence were to be artificially created this may assist humanity even further; perhaps the design of specific minds would be possible (need a physical breakthrough – just create an artificial Einstein). Such an idea hinges totally on the ability of neuroscientists to unlock the secrets of the human brain and allow the manipulation or ‘tailoring’ of specific abilities.

While the jury is still out debating the details of how such a feat will be made technologically possible, a rough outline of the methodologies involved in artificial augmentation could be enlightening. Already we are seeing the effects of a society increasingly driven by information systems. People want to know more in a shorter time, in other words, increase efficiency and volume. To compensate for the already torrential hordes of information available on various mediums (the internet springs to mind) humanity relies increasingly on ways to filter, absorb and understand stimuli. We are seeing not only a trend in artificial aids (search engines, database software, larger networks) but also a changing pattern in the way we scan and retain information. Internet users are now forced to make quick decisions and scan superficially at high speed to obtain information that would otherwise be lost amidst the backlog of detail. Perhaps this is one way in which humanity is guiding the course of evolution and retraining the minds basic instincts away from more primitive methods of information gathering (perhaps it also explains our parents’ ineptitude for anything related to the IT world!) This could be one of the first targets for augmentation; increasing the speed of information transfer via programmed algorithms that fuse our natural biological mechanisms of searching with the power of logical, machine-coded functions. Imagine being able to combine the biological capacity to effortlessly scan and recognise facial features with the speed of computerised programming.

How would such technology influence the structure of society today? The first assumption that must be taken is the universal implementation/adoption of such technologies by society. Undoubtedly there will be certain populations whom refuse for whatever reason, most likely due to a perceived conflict with their belief system. It is important to preserve and respect such individuality, even if it means that these populations will be left behind in terms of intellectual enlightenment. Critics of future societies and futurists in general argue that a schism will develop, akin to the rising disparities in wealth distribution present within today’s society. In counter-argument, I would respond that an increase in intelligence would likewise cause a global rise in morality. While this relationship is entirely speculative, it is plausible to suggest that a person’s level of moral goodness is at least related (if not directly) to their intelligence.

Of course, there are notable exceptions to this rule whereby intelligent people have suffered from moral ineptitude, however an increased neurological understanding and a practical implementation of ‘designer’ augmentations (as it relates to improving morality) would negate the possibility of a majority ‘superclass’ whom persecutes groups of ‘naturals’. At the very worst, there may be a period of unrest at the implementation of such technology while the majority of the population catches up (in terms of perfecting the implantation/augmentation techniques and achieving the desired level of moral output). Such innovations may even act as a catalyst for developing a philosophically sound model of universal morality; something which would in turn, allow the next generation of neurological ‘upgrades’ to implement.

Perhaps we are already in the midst of our future society. Our planet’s declining environment may hasten the development of such augmentation to improve our chances of survival. Whether this process involves the discarding of our physical bodies for a more impervious, intangible machine-based life or otherwise remains to be seen. With the internet’s rising popularity and increasing complexity, a virtual ‘Matrix-esque’ world in which such programs could live might not be so far-fetched after all. Whatever the future holds, it is certainly an exciting time in which to live. Hopefully humanity can overcome the challenges of the future in a positive way and without too much disruption to our technological progress.

The monk sat meditating. Alone atop a sparsely vegetated outcrop, all external stimulus infusing psychic energy within his calm, receptive mind. Distractions merely added to his trance, assisting the meditative state to deepen and intensify. Without warning, the experience culminated unexpectedly with a fluttering of eyelids. The monk stood, content and empowered with newfound knowledge. He has achieved pure insight…

The term ‘insight’ is often attributed to such vivid descriptions of meditation and religious devotion. More specifically, religions such as Buddhism promote the concept of insight (vipassana) as a vital prerequisite for spiritual nirvana, or transcendence of the mind to a higher plane of existence. But does insight exist for the everyday folk of the world? Are the momentary flashes of inspiration and creativity part and parcel of the same phenomenon or are we missing out on something much more worthwhile? What neurological basis does this mental state have and how can its materialisation be ensured? These are the questions I would like to explore in this article.

Insight can be defined as the mental state whereby confusion and uncertainty are replaced with certainty, direction and confidence.¬† It has many alternative meanings and contexts regarding its use, ranging from a piece of obtained information to the psychological capacity to introspect objectively (as according to some external judge – introspection is by its very name subjective in nature). Perhaps the most fascinating and generally applicable context is one which can be described as ‘an instantaneous flash of brilliance’ or ‘a sudden clearing of murky intellect and intense feelings of accomplishment’. In short, insight (in the context which I am interested) is one which can be attributed to the genius’ of society, those that seemingly bring together tiny shreds of information and piece them together to solve a particularly challenging problem.

Archimedes is perhaps the most widely cited example of human insight. As the story goes, Archimedes was inspired by the displacement of water in his bathtub to formulate a theory of calculating the volume of an irregular object. This technique was of great empirical importance as it allowed a reliable measure of density (referred to as ‘purity’ in those ancient times, and arising from a more fiscal motivation such as gold purity). The climax of the story describes a naked Archimedes running wildly through the streets unable to control his excitement at this ‘Eureka’ moment. Whether the story is actually true or not has little bearing on the force of the argument presented; all of us have most likely experienced this moment at one point in our lives, and is best summarised by the overcoming of seemingly insurmountable odds to conquer a difficult obstacle or problem.

But where does this inspiration come from? It almost seems as though the ‘insightee’ is unaware of the mental efforts to arrive at a solution, perhaps feeling a little defeated after a day spent in vain. Insight then appears at an unexpected moment, almost as though the mind is working unconsciously and without direction, and offers a brilliant method for victory. The mind must have some unconscious ability to process and connect information regardless of our directed attention to achieve moments such as this. Seemingly unconnected pieces of information are re-routed and brought to our attention in the context of the previous problem. Thus could there be a neurobiological basis for insight? One that is able to facilitate a behind-the-scenes process?

Perhaps insight is encouraged by the physical storage and structure of neural networks. In the case of Archimedes, the solution was prompted by the mundane task of taking a bath; superficially unrelated to the problem, however the value of its properties inflated by a common neural pathway (low bathwater – insert leg – raised bathwater similar to volumes and matter in general). That is, the neural pathways activated by taking a bath are somehow similar to those activated by the rumination of the problem at hand. Alternatively, the unconscious mind may be able to draw basic cause and effect conclusions which are then boosted to the forefront of our minds if they are deemed to be useful (ie: are they immediately relevant to the task being performed). Whatever the case may be, it seems that at times, our unconscious minds are smarter than our conscious attention.

The real question is whether insight is an intangible state of mind (ala ‘getting into the zone’) that can be turned on and off (thus making it useful for extending humanity’s mental capabilities), or whether it is just a mental byproduct from overcoming a challenge (hormonal response designed to encourage such thinking in the future). Can the psychological concept of insight be applied via a manipulation of the subject’s composition (neuronally)¬† and environmental characteristics (conductive to achieving insight), or is it merely an evolved response that serves a (behaviourally) reinforcing purpose?

Undoutedly the agent’s environment plays a part in determining the likelihood of insight occurring. Taking into account personal preferences (does the person prefer quite spaces for thinking?) the characteristics of the environment could serve to hamper the induction of such a mental state if it is sufficiently irritating to the individual. Insight may also be closely linked with intelligence, and depending on your personal conception of this, neurological structure (if one purports a strictly biological basis of intelligence). If this postulate is taken at face value, we have the conclusion that the degree of intelligence is directly related to the likelihood of insight, and perhaps also to the ‘quality’ of the insightful event (ie: a measure of its brilliance in comparison to inputs such as the level of available information and difficulty of the problem).

But what of day to day insight, it seems to crop up in all sorts of situations. In this context, insight might require a grading scale as to its level of brilliance if its use is to be justified in more menial situations and circumstances. Think of that moment when you forget a particular word, and try as you might, cannot remember it for the life of you. Recall also that flash of insight where the answer is simply handed to you on a platter without any conscious need to retrieve it. Paradoxically, it seems that the harder we try to solve the problem, the more difficult it becomes. However, is this due to efficiency problems such as ‘bottlenecking’ of information transfer, personality traits such as performance anxiety/frustration or some underlying and unconscious process that is able to retrieve information without conscious direction?

Whatever the case may be, our scientific knowledge on the subject is distinctly lacking, therefore an empirical inquiry into the matter is more than warranted (if it hasn’t already been commissioned). Psychologically, the concept of insight could be tested experimentally by providing subjects with a problem to solve and manipulating¬† the level of information (eg ‘clues’) and its relatedness to the problem (with consideration taken to intelligence, perhaps two groups, high and low intelligence). This may help to uncover whether insight is a factor to do with information processing or something deeper. If science can learn how to artificially induce a mental state akin to insight, the benefits for a positive-futurist society would be grand indeed.